A
i

Stocks ML:

Stocks ML
Release 0.1b
Ryan Raba

Feb 20, 2021

CONTENTS

1 API 2
1.1 stocksml.data i i i e e e e e 2
1.2 stocksml.model e e e e e e e e 3
1.3 stocksml.trade i i e e e e e e 4
2 Installation 5
3 Quick Start 6
3.1 LoadData e e e e e e e 7
3.2 BuildaModel e 8
33 Learn a Strate@y o v i e 8
34 Examinethe Strategy e 9
4 Market Data 11
4.1 Download from IEX Cloud e e 11
42 Load Symbol DataFrame e e e e e e e e e e 12
4.3 Build Feature DataFrame e e e e 12
5 Defining Models 14
5.1 Recurrent Neural Networks 0 o i e e e e 15
5.2 Convolutional Neural Network e e 16
5.3 Limiting Symbol Choices e 17
54 Advanced Models L e 18
Python Module Index 19
Index 20

Stocks ML, Release 0.1b

Apply artificial intelligence to the stock market. StocksML can build an entire trading strategy from scratch and
simulate the performance of that strategy against any specified benchmark.

CONTENTS 1

CHAPTER
ONE

API

StocksML modules

1.1 stocksml.data

FetchData (symbols, apikey, start=None, stop=None, path=None, append=True)
Download symbol data from iex using provided api key, counts against quota

Parameters
* symbols (1ist of str)- listof ticker symbols to retrieve
* apikey (str) - api token of the iex account to use

* start (str) — start date of historical prices to retrieve. Format is yyyy-mm-dd. Default
None uses current date

* stop (str) — stop date of historical prices to retrieve. Format is yyyy-mm-dd. Default
None uses current date

* path (str)— path of folder to place downloaded data. Default None uses current directory

* append (bool) — append new data to existing file or create if missing. Duplicate dates
ignored. False will overwrite file. Default True

LoadData (symbols=None, path=None)
Load price data from CSV files

Parameters

* symbols (1ist of str)-listofticker symbol files to load. Files should be in the form
of symbol.csv. Default None loads all files in provided directory.

* path (str) — path to symbol data files. Default None uses included demonstration data
folder location

Returns symbol dataframe
Return type pandas.DataFrame

BuildData (sdf)
Transform price data from symbol dataframe to training feature set

Parameters sdf (pandas.DataFrame)— symbol dataframe
Returns feature dataframe

Return type pandas.DataFrame

Stocks ML, Release 0.1b

1.2 stocksml.model

BuildModel (fdf, choices, layers=[('rnn', 32), (‘dnn’, 64), (‘dnn', 32)], depth=>5, count=2)
Build a model with the given structure

Parameters
* £fdf (pandas.DataFrame) — feature dataframe
* choices (int)— number of ticker symbols model can choose between

* layers (list of tuples) — list of tuples defining structure of model. Each tuple is

LI

(layer, size) where layer can be ‘dnn’, ‘cnn’, ‘Istm’, ‘rnn’, or ‘drop’. Default is a 3-layer
model with [(‘rnn’,32),(‘dnn’,64),(‘dnn’,32)]

* depth (int) — depth of time dimension for recurrent and convolutional networks (rnn,
cnn, Istm). Ignored if using dnn only. Default is 5.

e count (int)— number of models to build. Default is 2

Returns list of keras Models built, compiled and ready for training along with the appropriate data
array for training

Return type list of keras.Model, numpy.ndarray

LearnStrategy (models, sdf, dx, symbols, baseline=None, days=5, maxiter=1000, notebook=False)
Learn a trading strategy by training models against provided data

Parameters
* models (1ist of keras.Model) - list of prebuilt models to train
* sdf (pandas.DataFrame)— symbol dataframe with price information
* dx (numpy.array) — vectorized training data

* symbols (1ist of str)-listof ticker symbols available to the trading strategy. Must
all be contained in sdf

* baseline (str) — ticker symbol to use for baselining of trading strategy. Default None
performs no baseline

* days (int) — number of days to use for trading strategy. Default is 5
* maxiter (int) - maximum number of training iterations. Default is 1000

* notebook (bool) — configures live plots for running in a Jupyter notebook. Default is
False

ExamineStrategy (model, sdf, dx, symbols, start_date, days=5, baseline=None)
Explore a strategy learned by a model

Parameters
* model (keras.Model) — trained model to execute strategy with
* sdf (pandas.DataFrame)— symbol dataframe with price information
* dx (numpy.array) — vectorized training data

* symbols (list of str)-—listof ticker symbols available to the trading strategy. Must
all be contained in sdf

* start_date (str) - date to start trading strategy on. yyyy-mm-dd format

* days (int) — number of days to run strategy for. Default is 5

1.2. stocksml.model 3

Stocks ML, Release 0.1b

* baseline (str) — ticker symbol to use for baselining of trading strategy. Default None
performs no baseline

Demo (notebook=False)
Demonstration of how to use this package

Parameters notebook (bool) - set live plots for running properly in Jupyter notebooks. Default
is False

1.3 stocksml.trade

EvaluateChoices (sdf, symbols, dates, choices, baseline=None)
Evaluate trading strategy choices

Parameters
* sdf (pandas.DataFrame)— symbol dataframe with price information

* symbols (1ist of str)- listof symbol tickers corresponding to the symbol enum in
choices

* dates (list of str) — dates corresponding to choices, should match subset of pdf
index values

* choices (1ist of tuples) - tuple of (action, symbol enum, limit) for each day. ac-
tion is an enum of range 0-4 where [buy_limit, buy_sell, hold, sell_limit, sell_buy]. limit is
the percent over/under open price (range -1 to 1)

* baseline (str) - ticker symbol to use for baseline buy-hold strategy. Default None will
not compute a baseline (returns 0)

Returns performance of choices and baseline as a fraction of initial cash and ledger log of trades
Return type float, float, str

Open in Colab: https://colab.research.google.com/github/ryanraba/stocksml/blob/master/docs/quick_start.ipynb

1.3. stocksml.trade 4

https://colab.research.google.com/github/ryanraba/stocksml/blob/master/docs/quick_start.ipynb

CHAPTER
TWO

INSTALLATION

Normal installation from the command line (assuming you have Python3 installed)

$ python3 -m venv venv
$ source venv/bin/activate
(venv) $ pip install stocksml

From a Jupyter notebook environment such as Google Colab

'pip install stocksml

CHAPTER
THREE

Quick demonstration using included sample data sources.

import os
os.system("pip install stocksml")
print ('installed stocksml')

installed stocksml

from stocksml import Demo

Demo (notebook=True)

QUICK START

175 -
.EJ_SO- o . 154
2 FUE. Aesemems @ s eme o 8 . 5
g 125 4 ;‘o- - - P 5 14
E 100] HMEEPEL%e e ' E 13 4
£ 75] TEEIRmaESTISLT oL % 12
L) R em metns me - L]
k] | S 11
2 0501 e e E
E 0.25 = 101
s 0.9 1
0.00 4 -ssem e
0 200 200 800 800 1000 o 200 200 800 800 1000
0.30
. e
= L] 0?4 h fah
Z025{ °, : . Ay :
b . 7 I 1 -
S 020+ 1;_-_'-_ 3 1071 4 f
& S g il - e
%0.10- ' .-.“'l-,;"#l.qw*?{‘::?;:r.““" apd) ". S 5.l . W | | | ||]
= N LN, LOF: A _f o -"".".-'-f"*."' ‘%% i ‘L
3 A J.'.'%‘q_.'.‘:-). e Vite: @‘ P X a
g 005 1 ~HeT, -:,.-f'_'l-:'.i'_ ;, };m&; 10-3
* & i e &
000- T T T T T T T T T T T T
0 200 400 600 800 1000 0 200 400 600 800 1000
Tading lteration Taining lteration
2021-02-01 buy market order for 24 shares of vixm at 0.0 -> Dbought 24
—shares at 41.6 ($0.9, $1000.0, 43.2, 41.6, 41.6, 41.9)
2021-02-01 sell 1limit order for 24 shares of vixm at 40.9 —> sold 24
—shares at 41.6 ($1000.0, s$1000.0, 43.2, 41.6, 41.06, 41.9)
2021-02-02 buy market order for 24 shares of vixm at 0.0 —-> Dbought 24
—shares at 41.2 (s$11.4, $1000.0, 41.3, 40.6, 41.2, 40.7)
2021-02-02 sell 1limit order for 24 shares of vixm at 42.6
2021-02-03 sell market order for 24 shares of vixm at 0.0 —> sold 24
—shares at 40.2 ($977.4, $977.4, 40.5, 39.9, 40.2, 39.9)

(continues on next page)

Stocks ML, Release 0.1b

(continued from previous page)

2021-02-03 buy market order for 24 shares of vixm at 0.0 -> Dbought 24
—shares at 40.2 ($11.4, s$977.4, 40.5, 39.9, 40.2, 39.9)
2021-02-03 sell 1limit order for 24 shares of vixm at 43.4
2021-02-04 sell market order for 24 shares of vixm at 0.0 -> sold 24
—shares at 39.5 ($959.2, $959.2, 39.8, 39.2, 39.5, 39.7)
2021-02-04 buy market order for 24 shares of vixm at 0.0 -> Dbought 24
—shares at 39.5 ($11.4, $959.2, 39.8, 39.2, 39.5, 39.7)
2021-02-04 sell 1limit order for 24 shares of vixm at 40.4
2021-02-05 sell market order for 24 shares of vixm at 0.0 —> sold 24
—shares at 39.4 ($958.0, $958.0, 40.0, 39.4, 39.4, 39.9)
2021-02-05 buy market order for 24 shares of vixm at 0.0 -> Dbought 24
—shares at 39.4 ($11.4, $958.0, 40.0, 39.4, 39.4, 39.9)
2021-02-05 sell 1limit order for 24 shares of vixm at 40.6
—————————— liquidate —————————-
2021-02-05 sell market order for 24 shares of vixm at 0.0 —> sold 24
—shares at 39.9 ($968.1, $968.1, 40.0, 39.4, 39.4, 39.9)
—————————— result = $968.1 at 0.932 of baseline —————————-
3.1 Load Data
from stocksml import LoadData, BuildData
load symbols and build a symbol dataframe
sdf, symbols = LoadData (symbols=['SPY', 'BND'])
convert symbol dataframe to a feature dataframe
fdf = BuildData (sdf)
fdf.head ()
building BND data...
building SPY data...

bnd0 bndl bnd2 spy2 spy3 spy4
date
2017-01-03 -0.001654 -0.000511 -0.001190 -0.003938 -0.003082 0.018743
2017-01-04 0.009508 0.018398 0.053818 0.013076 0.026660 0.391944
2017-01-05 0.109609 0.010800 0.025270 0.015081 -0.007054 0.026528
2017-01-06 -0.043183 0.003252 0.021451 0.003648 0.014804 0.152411
2017-01-09 0.012214 0.010019 0.011997 0.007136 -0.019585 -0.380552

[5 rows x 10 columns]

3.1. Load Data

Stocks ML, Release 0.1b

3.2 Build a Model

Define a model and create a set of 2 or more with corresponding training data.

from stocksml import BuildModel

models, dx = BuildModel (fdf, len(symbols), layers=[('rnn',32), ('dnn',64), ('dnn',32)1,
—count=2)

models[0] .summary ()

Model: "model"

La§;;_TE§;;7__ Output Shape Param # Connected to
input (InputLayer) [(None, 5, 10)] 0

;;n_o (SimpleRNN) (None, 32) 1376 input [0] [0]
é;n_l (Dense) (None, 64) 2112 rnn_0[0][0]
é;n_Z (Dense) (None, 32) 2080 dnn_1[0][0]
;;tion (Dense) (None, 5) 165 dnn_2[0] [0]
g;mbol (Dense) (None, 2) 66 dnn_2[0] [0]
£Zmit (Dense) (None, 1) 33 dnn_2[0] [0]

Total params: 5,832
Trainable params: 5,832
Non-trainable params: 0

3.3 Learn a Strategy

After creating a set of adversarial models and the corresponding training data formatted for them, StocksML is ready
to learn a new trading strategy. This is done in an unsupervised manner, meaning no truth data is provided.

The algorithm begins with each model making random guesses. When one model successfully guesses a sequence of
trades that results in superior performance (i.e. makes money or beats a benchmark), that model’s strategy is “learned”
by the unsuccessful model. This continues for a set period of iterations or until it appears that the models are no longer
learning anything useful.

The LearnStrategy function displays a live plot of various metrics to illustrate the learning process and help
inform when a good stopping point might be.

3.2. Build a Model 8

[5]:

Stocks ML, Release 0.1b

from stocksml import LearnStrategy

LearnStrategy (models, sdf, dx,

symbols,

'SPY',

200 {
175 ..:E.i.ﬂ
- "=y s @

s "d - fs

150

135 4
100 4
0.75

. .
dems "a P am™ W5 SESEE SHmS simims mm o G ¢ G e § Sese S S

0.50

T .

0.25

Model Choice Standard Deviation

0.00 e * . e *

Normalized Performance

200

0.30 4
0.25 4
0.20 - .3__
015 4 E
0.10 4 'a_'

0.05

Model Limit Standard Deviation
*

Model Training Loss

DUU = T T T T

Tading lteration

3.4 Examine the Strategy

5, 500, True)

115

110 A1

105

100 4

0.95 4

0.90 4

200

107 4

1071

1072 4

107 4

200 300
Taining lteration

Once a trading strategy has been learned, it can be applied to different points in time across the available market data

to see what it does and how it performs.

To avoid overfitting, it would be wise to examine strategy performance on data that wasn’t used for training.

from stocksml import ExamineStrategy

ExamineStrategy (models[0], sdf, dx, symbols, '2021-02-01', days=5, baseline='SPY')
2021-02-01 buy market order for 2 shares of spy at 0.0 -> Dbought 2.,
—shares at 376.2 ($247.5, $1000.0, 377.3, 370.4, 373.7, 376.2)

2021-02-02 sell 1limit order for 2 shares of spy at 397.7

2021-02-03 sell market order for 2 shares of spy at 0.0 -> sold 2.,
—shares at 382.4 ($1012.4, $1012.4, 383.7, 380.5, 382.4, 381.9)
2021-02-03 buy market order for 2 shares of spy at 0.0 -> Dbought 2.,
—shares at 382.4 ($247.5, $1012.4, 383.7, 380.5, 382.4, 381.9)

2021-02-03 sell 1limit order for 2 shares of spy at 390.0

2021-02-04 sell market order for 2 shares of spy at 0.0 —> sold 2.,
—shares at 383.0 ($1013.5, $1013.5, 386.2, 382.0, 383.0, 386.2)
2021-02-04 buy market order for 2 shares of spy at 0.0 -> Dbought 2.,
—shares at 383.0 ($247.5, $1013.5, 386.2, 382.0, 383.0, 386.2)

2021-02-04 sell 1limit order for 2 shares of spy at 389.9

2021-02-05 sell 1limit order for 2 shares of spy at 346.2 —> sold 2.,
—shares at 388.2 ($1023.9, $1023.9, 388.5, 386.1, 388.2, 387.7)
2021-02-05 buy market order for 11 shares of bnd at 0.0 -> Dbought 11
—»shares at 87.0 ($67.4, $1023.9, 87.1, 87.0, 87.1, 87.0)

(continues on next page)

3.4. Examine the Strategy

Stocks ML, Release 0.1b

(continued from previous page)
—————————— liquidate —————————-
2021-02-05 sell market order for 11 shares of bnd at 0.0 —> sold 11
—shares at 87.0 ($1023.9, $1023.9, 87.1, 87.0, 87.1, 87.0)
—————————— result = $1023.9 at 0.986 of baseline —————————-

Open in Colab: https://colab.research.google.com/github/ryanraba/stocksml/blob/master/docs/data.ipynb

3.4. Examine the Strategy 10

https://colab.research.google.com/github/ryanraba/stocksml/blob/master/docs/data.ipynb

[17]:

CHAPTER
FOUR

MARKET DATA

StocksML uses stock market price data as the basis for training models to learn market trading strategies. A small set
of demonstration data is included in the StocksML package, but generally users will need to download or otherwise
supply their own price data.

4.1 Download from IEX Cloud

The FetchData function in StocksML can be used to download data from IEX Cloud. An account is needed (free
or paid tier) on IEX to retrieve an API token from the console screen. Copy the token and paste it in to the apikey
parameter. A list of desired ticker symbols and a start/end date range should be supplied. These will be stored as CSV
files in the specified location.

Note that this will count towards your monthly quota on IEX.

Here we download a small sample of Google and Exxon price data.

'pip install stocksml >/dev/null
'mkdir data >/dev/null
from stocksml import FetchData

FetchData (['GOOG', 'XOM'], apikey='xXXXXXXXXXXXXXXXX', start='2020-08-01"', stop='2020-
—12-31', path='./data')

fetching GOOG data... 106 days
fetching XOM data... 106 days

Each ticker symbol is stored in a separate CSV file containing daily high, low, open, close and volume columns with
a date column in yyyy-mm-dd format.

!'1s data/

GOOG.csv XOM.csv

'head data/GO0OG.csv

date, open,high, low, close, volume
2020-08-03,1486.64,1490.47,1465.64,1474.45,2331514
2020-08-04,1476.57,1485.56,1458.65,1464.97,1903489
2020-08-05,1469.3,1482.41,1463.46,1473.61,1979957
2020-08-06,1471.75,1502.39,1466.0,1500.1,1995368
2020-08-07,1500.0,1516.845,1481.64,1494.49,1577826
2020-08-10,1487.18,1504.075,1473.08,1496.1,1289530
2020-08-11,1492.44,1510.0,1478.0,1480.32,1454365

(continues on next page)

11

https://iexcloud.io/
https://iexcloud.io/console

[18]:

[19]:

Stocks ML, Release 0.1b

(continued from previous page)

2020-08-12,1485.58,1512.3859,1485.25,1506.62,1437655
2020-08-13,1510.34,1537.25,1508.005,1518.45,1455208

Data from any other source may be used instead of IEX cloud if it can be represented in this same format.

4.2 Load Symbol DataFrame

Appropriately named and formatted CSV files can be loaded in to a single Symbol DataFrame (sdf) using LoadData.
The sdf provides a convenient single location for all market data needed later on for model training and trading strategy
simulation.

All files in the specified directory can be loaded by leaving the symbols parameter as None.

from stocksml import LoadData

sdf, symbols = LoadData (symbols=None, path='./data')

sdf .head ()

xom_open xom_high xom_low ... goog_low goog_close goog_volume
date .
2020-08-03 42.05 42.50 41.47 ... 1465.64 1474 .45 2331514
2020-08-04 42.34 43.60 42.24 ... 1458.65 1464.97 1903489
2020-08-05 44.15 44 .31 43.53 ... 1463.46 1473.61 1979957
2020-08-06 43.40 43.90 43.25 ... 1466.00 1500.10 1995368
2020-08-07 43.23 43.52 42.81 ... 1481.64 1494.49 1577826

[5 rows x 10 columns]

4.3 Build Feature DataFrame

The raw price data is not used directly by the models to learn a market strategy. Instead a set of training features must
first be created to represent the data in a way that is more conducive to model learning. These are held in a feature
dataframe (fdf).

These features are currently fixed within the BuildData function and are a work in progress, likely to be expanded
in the future. They may potentially be made user configurable at a later date.

For now, all that is required to build an fdf is to pass the sdf to BuildData.
fdf = BuildData (sdf)

fdf.head()

building GOOG data...
building XOM data...

goog0 googl goog2 ... xom2 xom3 xomé
date Ce
2020-08-03 -0.014814 -0.017526 -0.010784 ... -0.001423 -0.000581 0.159583
2020-08-04 -0.043365 -0.066009 -0.054701 ... 0.042882 0.161771 0.510642
2020-08-05 -0.033192 0.015996 -0.042706 ... 0.273211 0.048568 -0.159542
2020-08-06 0.101999 0.000117 0.000026 ... -0.110557 -0.027508 0.256103
2020-08-07 0.068573 0.090926 0.113664 ... -0.026588 -0.026349 0.215602

(continues on next page)

4.2. Load Symbol DataFrame 12

Stocks ML, Release 0.1b

(continued from previous page)
[5 rows x 10 columns]

Now we are ready to build a model that can learn a market strategy from this data.

Open in Colab: https://colab.research.google.com/github/ryanraba/stocksml/blob/master/docs/modeling.ipynb

4.3. Build Feature DataFrame 13

https://colab.research.google.com/github/ryanraba/stocksml/blob/master/docs/modeling.ipynb

CHAPTER
FIVE

DEFINING MODELS

Models can be created through a simple structure that defines each hidden layer. Keras and Tensorflow are used
under the covers so many of the common layer types available in Keras are passed through including: - Dense Neural
Network - Recurrent Neural Network - Long Short-Term Memory Network - Convolutional Neural Network - Dropout

The desired output size of each layer must also be defined. Activations and other settings are fixed. StocksML will
attempt to fit together layers correctly and align with the training data, but some care must be taken to define things in
a way that makes sense.

StocksML uses an unsupervised adversarial algorithm for learning new trading strategies. This requires at least two
models to learn from each other. Additional models (specified by the count parameter) are created by copying the
first model and re-initializing the initial weights. The BuildModel function returns a list of Keras models and a
numpy array of training data appropriately shaped for the model set.

First lets create a dense neural network with three hidden layers. Dropout layers are typically inserted to help the
model generalize and prevent overfitting.

'pip install stocksml >/dev/null
from stocksml import LoadData, BuildData, BuildModel

sdf, symbols = LoadData (symbols=['SPY',6 'BND', 'VNQI', 'VIXM'])
fdf = BuildData (sdf)

building BND data...
building SPY data...
building VIXM data...
building VNQI data...

: models, dx = BuildModel (fdf, len(symbols), count=2, layers=[('dnn',6128),

('drop', 0.25),
('"dnn', 64),
('drop', 0.25),
('dnn',32) 1)

print ('training data shape', dx.shape)

models[0] . summary ()

training data shape (1036, 20)

Model: "model"

Layer (type) Output Shape Param # Connected to

input (InputLlayer) [(None, 20)] 0

—

dnn_0 (Dense) (None, 128) 2688 input [0] [0]

(continues on next page)

14

Stocks ML, Release 0.1b

(continued from previous page)

—

drop_1 (Dropout) (None, 128) 0 dnn_0[0] [0]
é;n_z (Dense) (None, 64) 8256 drop_1[0][0]
é;op_B (Dropout) (None, 64) 0 dnn_2[0] [0]
é;n_4 (Dense) (None, 32) 2080 drop_3[0][0]
;;tion (Dense) (None, 5) 165 dnn_4[0] [0]
é;mbol (Dense) (None, 4) 132 dnn_4[0] [0]
iZmit (Dense) (None, 1) 33 dnn_4[0] [0]

Total params: 13,354
Trainable params: 13,354
Non-trainable params: 0

The dense and dropout layers we specified are created in the middle of the model (the ‘hidden’ portion) with the output
sizes we provided. An input layer is added at the start and shaped to fit our provided feature dataframe (£df). The
2-D numpy array dx is built from the feature dataframe returned for use in training later on.

Every model must end with three output layers: action, symbol, and limit. These output layers represent the “trading
strategy” that is learned, including what action to take in the market (i.e. buy, sell, hold), what ticker symbol to use,
and what limit price to set.

5.1 Recurrent Neural Networks

When a recurrent neural network (rnn or Istm) a third dimension is needed in the training data. This third dimension
represents time and is created by stacking previous days of data. Use the depth parameter to control the size of the
time stacking.

The recurrent layers can pass through the third dimension to each other, but this must be dropped when passing to a
dense layer or the final output layers. This is handled automatically by StocksML.

: models, dx = BuildModel (fdf, len(symbols), count=2,

depth=5, layers=[('rnn', 64),

print ('training data shape', dx.shape)
models[0] . summary ()

5.1. Recurrent Neural Networks 15

Stocks ML, Release 0.1b

training data shape (1036, 5, 20)
Model: "model"

igyer (type) Output Shape Param # Connected to

input (InputLlayer) [(None, 5, 20)] 0 o
ggn_o (SimpleRNN) (None, 5, 64) 5440 input [0] [0]

a;op_l (Dropout) (None, 5, 64) 0 rnn_0[0][0]

;;n_2 (SimpleRNN) (None, 32) 3104 drop_110]1[0]

é;op_B (Dropout) (None, 32) 0 rnn_2[0][0]

é;n_4 (Dense) (None, 32) 1056 drop_310][0]

;;tion (Dense) (None, 5) 165 dnn_4[0][0]

é;mbol (Dense) (None, 4) 132 dnn_4[0][0]

izmit (Dense) (None, 1) 33 dnn_4[0][0]

Total params: 9,930
Trainable params: 9,930
Non-trainable params: 0

We see that the input and rnn_0 layers have an extra dimension in the output shape. This is gone in the output of rnn_2
passed to dnn_4. The shape of the training data returned in dx is now 3 dimensional.

5.2 Convolutional Neural Network

As with recurrent neural networks, convolutional neural networks also need a third time dimension. When using a
CNN, the third dimension is suppressed with an extra Flatten layer inserted afterwards.

: models, dx = BuildModel (fdf, len(symbols), count=2,

depth=5, layers=|[

print ('training data shape', dx.shape)
models[0] .summary ()

5.2. Convolutional Neural Network 16

Stocks ML, Release 0.1b

training data shape (1036, 5, 20)
Model: "model"

igyer (type) Output Shape Param # Connected to
input (InputLlayer) [(None, 5, 20)] 0

é;n_o (Conv1lD) (None, 3, 32) 1952 input [0] [0]
a;op_l (Dropout) (None, 3, 32) 0 cnn_0[0][0]
é;n_2 (Conv1D) (None, 1, 16) 1552 drop_110]1[0]
gzatten (Flatten) (None, 16) 0 cnn_2[0]11[0]
é;op_B (Dropout) (None, 16) 0 flatten[0][0]
é;n_4 (Dense) (None, 32) 544 drop_310][0]
;;tion (Dense) (None, 5) 165 dnn_4[0][0]
g;mbol (Dense) (None, 4) 132 dnn_4[0][0]
izmit (Dense) (None, 1) 33 dnn_4[0][0]

Total params: 4,378
Trainable params: 4,378
Non-trainable params: 0

Here we see that the cnn_0 layer passed 3-D data to the next cnn_2 layer, but then a flatten layer is automatically
inserted before passing to the dense layers. As with the recurrent models, the training data in dx is now 3-D.

5.3 Limiting Symbol Choices

One of the three output layers (symbol) decides which ticker symbol to use in trading for the corresponding action and
limit. This symbol must be present in the feature dataframe (fdf), but the models don’t actually care about that. They
simply need to know what the maximum number of symbols is that they are going to be choosing from.

Sometimes it is desireable to restrict the ticker symbols used for actual trading to just a subset of what is in the training
data. In this case, the choices parameter can be reduced to the desired value. Later on during training, this must be
remembered and preserved for accurate strategy learning.

5.3. Limiting Symbol Choices 17

Stocks ML, Release 0.1b

: models, dx = BuildModel (fdf, 2, count=2,

models[0] . summary ()

Model: "model"

layers=[('dnn',128), ('dnn',64), ('dnn',32)1)

igyer (type) Output Shape Param # Connected to

;nput (Inpugia;;;; - [(N;;e, . A o
é;n_o (Dense) (None, 128) 2688 input [0] [0]

é;n_l (Dense) (None, 64) 8256 dnn_0[0] [0]

é;n_z (Dense) (None, 32) 2080 dnn_1[0] [0]

;;tion (Dense) (None, 5) 165 dnn_2[0] [0]

é;mbol (Dense) (None, 2) 66 dnn_2[0] [0]

iZmit (Dense) (None, 1) 33 dnn_2[0] [0]

Total params: 13,288
Trainable params: 13,288
Non-trainable params: 0

The size of the symbol output layer tracks to the value passed in to the choices parameter.

5.4 Advanced Models

If you are comfortable using Keras directly, you can certainly build your own models with whatever advanced features
you desire. The only constraint is that they must have one input layer and three output layers corresponding to action,
symbol and limit as demonstrated above. It is likely easiest to continue to use the BuildModel function to construct
the training data array dx even if ignoring the model list returned. The other option is augmenting the model list with
additional advanced models of your own, they need not all be the same.

5.4. Advanced Models

18

PYTHON MODULE INDEX

S

stocksml.data, 2
stocksml .model, 2
stocksml.trade, 4

19

B

BuildData () (in module stocksml.data), 2
BuildModel () (in module stocksml.model), 3

D

Demo () (in module stocksml.model), 4

E

EvaluateChoices () (in module stocksml.trade), 4
ExamineStrateqgy () (in module stocksml.model), 3

F

FetchData () (in module stocksml.data), 2

L

LearnStrategy () (in module stocksml.model), 3
LoadData () (in module stocksml.data), 2

M

module
stocksml.data, 2
stocksml.model, 2
stocksml.trade, 4

S

stocksml.data
module, 2

stocksml.model
module, 2

stocksml.trade
module, 4

INDEX

20

	API
	stocksml.data
	stocksml.model
	stocksml.trade

	Installation
	Quick Start
	Load Data
	Build a Model
	Learn a Strategy
	Examine the Strategy

	Market Data
	Download from IEX Cloud
	Load Symbol DataFrame
	Build Feature DataFrame

	Defining Models
	Recurrent Neural Networks
	Convolutional Neural Network
	Limiting Symbol Choices
	Advanced Models

	Python Module Index
	Index

